
SANDIA REPORT 
SAND2000-8230 

a Unlimited Release 
Printed March 2000 

Band Spreading in Two-Dimensional 
Microchannel Turns for Electrophoretic or 
Electroosmotic Species Transport 

S. K. Griffiths. R. H. Nilson 

Prepared by 
Sandia National Laboratories 
Albuquerque. New Mexico 87185 and Livermore, California 94550 

Sandia is a multiprogram laboratory operated by Sandia Corporation 
a Lockheed Martin Company, ior the United States Department of 
Energy under Contract DE-AC04-94AL85000. 

Approved for public release; further dissemination unlimited. 

@I Sandia National laboratories 



Issued by Sandia National Laboratones, operated for the United States 
Department of Energy by Sandia Corporation. 

NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government, nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, make any warranty, 
express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represent that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof, or any of their 
contractors or subcontractors. The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency 
thereof, or any of their contractors. 

Printed in the United States of America. This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831 

Prices available from (703) 605-6000 
Web site: http://www.ntis.gov/ordering.htm 

Available to the public from 
National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A03 
Microfiche copy: A01 



SAND2000-8230
Unlimited Release

Printed March 2000

Band Spreading in Two-Dimensional Microchannel Turns for
Electrophoretic or Electroosmotic Species Transport

Stewart K. Griffiths and Robert H. Nilson
Sandia National Laboratories

Livermore, California 94551-0969

ABSTRACT

Analytical and numerical methods are employed to investigate species transport by electrophoretic or electroos-
motic motion in the curved geometry of a two-dimensional turn. Closed-form analytical solutions describing
the turn-induced diffusive and dispersive spreading of a species band are presented for both the low and high
Peclet number limits. We find that the spreading due to dispersion is proportional to the product of the turn
included angle and the Peclet number at low Peclet numbers. It is proportional to the square of the included
angle and independent of the Peclet number when the Peclet number is large. A composite solution applicable
to all Peclet numbers is constructed from these limiting behaviors. Numerical solutions for species transport
in a turn are also presented over a wide range of the included angle and the mean turn radius. Based on
comparisons between the analytical and numerical results, we find that the analytical solutions provide very
good estimates of both dispersive and diffusive spreading provided that the mean turn radius exceeds the
channel width. These new solutions also agree well with data from a previous study. Optimum conditions
minimizing total spreading in a turn are presented and discussed.

INTRODUCTION

Microchannel systems, first explored only about
ten years ago [1-5], are now under development
for a wide range of applications in the detection,
analysis and synthesis of chemical and biological
species [6-16]. Employing channel widths from a
few microns to about one millimeter, such systems
may permit the broad integration and miniaturiza-
tion of many processes now performed at the labo-
ratory scale.

Many microchannel devices employ some combi-
nation of electrophoresis and electroosmotic flow on
a single substrate. Electrophoresis in a stationary or
fluid phase is typically used for analysis, while elec-
troosmotic flow is employed for sample preparation
and injection into the separation column [1-11,14-17].
In a few instances, electroosmotic flow is used in con-
junction with electrophoresis with the intent to im-
prove separation efficiency [18,19]. Electroosmotic
flows are also used for analysis via electrochromatog-
raphy in either open or packed channels [12,20-24].

Both electrophoresis and electroosmotic flow
permit long-range species transport with little dis-

persion due to nonuniform speeds [25-27]. However,
while this is true for straight channel segments, mi-
crochannel turns can produce dramatic skewing of an
otherwise flat species band due to the locally nonuni-
form electric field or fluid velocity. Such skewing is
generally irreversible because transverse diffusion re-
distributes species concentrations across the channel,
and the net effect on the band is a large and perma-
nent spreading of the species distribution along the
channel downstream of the turn. Compositional in-
terfaces are similarly deformed and spread by trans-
port through a turn. As a result, elbows, wyes, tees
and other common fittings are often avoided in mi-
crochannel systems. This limitation constrains sys-
tem design and precludes compact channel layout on
a small chip area.

Turns are a significant source of dispersion in
both separation processes and routine species trans-
port. This has been recognized for some time. In
1960 Giddings analyzed the excess band spreading
induced by capillary coiling in packed-column gas-
phase chromatography [28]. His analysis was based
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on assumptions that the turn radius is large com-
pared to the capillary diameter and that transverse
variations of the species concentration are very small.
This latter approximation is roughly equivalent to an
assumption that the Peclet number is small. Under
these restrictions, Giddings obtained a closed-form
expression for the effective diffusivity during trans-
port through a turn as a function of the mean speed,
capillary diameter and turn radius.

In 1995 Kasicka et al. analyzed the effects of cap-
illary coiling on capillary zone electrophoresis [29].
This study focused on cases in which transverse dif-
fusion is negligible, corresponding to the limit of an
infinite Peclet number. For such cases the authors
obtained closed-form expressions describing the in-
creased variance of the species distribution induced
by a turn. Their analysis also employed the assump-
tion of a large turn radius.

Most recently, Culbertson et al. investigated
several sources of dispersion in microchannel de-
vices [30]. As part of this study, they collected a large
set of data on the increased variance of a species band
downstream of a turn. These quantitative results
span a very wide range of conditions and turn geome-
tries. They also developed a physically-motivated
expression describing the increased variance over all
Peclet numbers. Two empirical constants appearing
in this expression were obtained from a fit to their
data.

Here we derive rigorous analytical solutions de-
scribing the increased band variance induced by a
two-dimensional turn for either electrophoretic or
electroosmotic species motion. Based on the assump-
tion of a large turn radius, solutions are first obtained
in the limits of low and high Peclet numbers. These
limiting results are then combined to provide sim-
ple closed-form expressions describing both the dis-
persive and total spreading at all Peclet numbers.
In addition, the governing equations describing the
electric potential and advective and diffusive species
motion are solved numerically. No approximations
regarding the turn geometry are employed in this
numerical approach. The analytical solutions are
compared with these numerical results and with data
from the previous study [30] by Culbertson et al.

GOVERNING EQUATIONS

Consider the electroosmotic flow and species
transport in the curved channel of a two-dimensional
turn of constant radius. The channel width is pre-
sumed constant, the top and bottom surfaces are pla-
nar, and all surfaces bounding the channel are imper-

meable and non-conducting. Assuming that the fluid
is incompressible and that transport properties are
constant, the time-dependent concentration field is
governed by

∂c

∂t
+ u·∇c = D∇2c (1)

where c is the local species concentration, t is time,
u=ui +vj is the local fluid velocity, and D is the co-
efficient of diffusion. Further assuming that the flow
is steady, that there are no applied pressure gradients
and that inertial effects are small, the momentum
equation may be written as

µ∇2u = ρe∇φ (2)

where µ is the fluid viscosity, ρe is the net local
charge density, and φ is the electric potential. Fi-
nally, for a dielectric constant, ε, that does not vary
with position, the Poisson equation governing the
electric potential is

ε∇2φ = −ρe (3)

The charge density, ρe, for equivalent ions may be re-
lated to the electric potential through the Boltzmann
distribution.

In many cases of practical interest, the local
fluid velocity in electroosmotic flow is proportional
to the applied electric field [31]. The main conditions
necessary for such similitude are a quasi-steady elec-
tric field, uniform fluid density, and uniform viscosity
of the neutral fluid outside the Debye layer. Further,
the Debye layer thickness must be small compared to
any channel dimension, and all solid surfaces bound-
ing the fluid must be electrically non-conducting rel-
ative to the fluid and have a uniform surface charge
or surface potential. All of these conditions are usu-
ally met in microchannel systems, at least over the
scale of a single turn.

Under these restrictions, the electric potential
outside the Debye layer is governed by the Laplace
equation

∇2φ = 0 (4)

and the local fluid velocity is everywhere given by

u = −εζ
µ
∇φ (5)

The Navier-Stokes equations presented in Eq. (2)
thus need not be solved under the conditions outlined
above. Moreover, when these conditions are satis-
fied, the electric potential and fluid velocity in any

4



two-dimensional channel bounded by parallel planes
is strictly two-dimensional and is independent of the
channel depth [31].

The equations above were developed in the con-
text of neutral species transport in electroosmotic
flow. However, when the electroosmotic fluid veloc-
ity is proportional to the electric field, these gov-
erning equations are almost the same as those de-
scribing the transport of a single charged species in
electrophoretic motion in a stationary phase. That
is, in both cases the species flux varies linearly
with both the concentration gradient and the elec-
tric field. For electroosmotic flow, the local species
flux is J=D∇c− εζ/µ∇φ; the electrophoretic flux is
J =D∇c + νzF∇φ. As such, solutions to the prob-
lem of electroosmotic flow also apply to that of elec-
trophoresis provided that both problems are prop-
erly normalized. Further, similar equations also gov-
ern species transport in some pressure-driven flows.
In both porous materials and open channels having
a very small aspect ratio, the local velocity of an
incompressible fluid is proportional to the pressure
gradient at low Reynolds numbers, and the pressure
field is governed by the Laplace equation [32,33]. The
solutions presented here thus also apply to pressure-
driven flows in these special cases.

To solve generally for the species concentration,
we now introduce a set of dimensionless variables.
The new normalized dependent variables are taken
as c∗ = c/co, u∗ = u/U and φ∗ = φ/aE, where co
is some reference concentration yet to be specified,
E is the magnitude of the applied axial electric field
far from the turn, and U = εζE/µ is the Helmholtz-
Smoluchowski speed for electroosmotic flow past a
planar surface. We take U = −νzFE for elec-
trophoretic motion. The new independent variables
are y∗= (r−ri)/a, s∗= (θ − ωt)r̄/a and t∗=Dt/a2,
where r and θ are the radial and angular coordinates,
ri is the inner radius of the turn, and a is the channel
width. This normalization leads to two new param-
eters, the Peclet number, Pe=Ua/D indicating the
relative magnitudes of advective and diffusive trans-
port rates, and the inverse of the normalized radius
of the turn, δ=a/r̄, where r̄=(ri+ro)/2. Finally, we
take ω = U/r̄ such that the transformed coordinate
system rotates at a speed consistent with species mo-
tion along the turn.

Introducing these normalized variables into
the primitive governing equations and rearranging
slightly yields

1
r∗

∂

∂y∗

(
r∗
∂φ∗

∂y∗

)
+

1
r∗2

∂ 2φ∗

∂s∗2
= 0 (6)

for Eq. (4) and

u∗ = −
(
∂φ∗

∂y∗
+

1
r∗
∂φ∗

∂s∗

)
(7)

for Eq. (5). The new independent variable, r∗, is
introduced here merely as a convenience. It is given
by

r∗ =
r

r̄
= 1− δ

2
(
1− 2y∗

)
(8)

where, again, δ = a/r̄. Boundary conditions for the
normalized potential are ∂φ∗/∂y∗ = 0 at y∗ = 0 and
y∗ = 1 and ∂φ∗/∂s∗ = −1 in the straight sections
ahead of and behind the turn.

Given Eq. (6) and the prescribed boundary con-
ditions, the electric potential possesses nontrivial so-
lutions satisfying ∂φ∗/∂y∗ = 0 and ∂φ∗/∂s∗ = −1
everywhere in the channel when the mean radius
of the turn is large compared to the channel width.
The normalized fluid velocity thus possesses no radial
component, and the speed along the curved channel
is

u∗ =
1
r∗
≈ 1 +

δ

2
(
1− 2y∗

)
(9)

The electroosmotic or electrophoretic speed is thus
largest along the inner radius of the turn and falls
about linearly with distance across the channel when
the radius of the turn is large. The magnitude of
the variation between the inner and outer radii is
∆u∗=δ.

Similarly introducing the normalized variables
into the primitive equation governing the concentra-
tion field gives

∂c∗

∂t∗
+ Pe

(u∗
r∗
−1
)∂c∗
∂s∗

=
1
r∗

∂

∂y∗

(
r∗
∂c∗

∂y∗

)
+

1
r∗2

∂ 2c∗

∂s∗2
(10)

Now expanding Eq. (10) in terms of δ, and neglect-
ing all higher-order terms, the governing equation for
species motion may be rewritten as

∂c∗

∂t∗
+ Pe

(
u′ − 1

)∂c∗
∂s∗

=
∂ 2c∗

∂y∗2
+
∂ 2c∗

∂s∗2
(11)

where the apparent speed u′ is given by

u′ =
u∗

r∗
≈ 1 + δ

(
1− 2y∗

)
(12)

Note that the variation in u′ across the channel is
twice that of u∗. This is because the apparent speed
accounts for the variation in path length across the
channel, as well as the actual variation in the speed.
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Also note that Eq. (11) is exactly the equation de-
scribing species transport in a straight rectangular
channel, except that the actual fluid speed u∗ is re-
placed by the apparent value u′.

LOW PECLET NUMBER SOLUTION

In the limit of a low Peclet number or a large
turn radius, the time required for a species band to
traverse a turn is long compared to the characteristic
diffusion time based on the channel width. Since the
transit time is t = r̄θ/U , this may be expressed in
terms of the normalized time as

t∗ =
Dt

a2
=

θ

δPe
À 1 (13)

Thus t∗ is large whenever the product δPe is much
smaller than the included angle, θ. Late-time ap-
proximations are then appropriate when solving the
governing transport equations.

Late-time solutions to Eq. (11) are well known
[34-37]. As a species band is convected in a nonuni-
form flow field, streamwise advection and diffusion
tend to spread the profile in the direction of motion.
At the same time, transverse diffusion tends to re-
duce transverse concentration variations induced by
the nonuniform velocity profile. At sufficiently late
times, convective transport in the streamwise direc-
tion is just balanced by diffusive transport in the
transverse direction, giving rise to the phenomenon
of dispersion. This dispersion produces a mean con-
centration profile consistent with diffusive transport
alone, though the apparent diffusivity is larger than
the actual value. The mean species distribution
along the channel is thus Gaussian. The variance of
this distribution grows linearly in time and is given
by

σ2 = 2D(1 + α0Pe
2)t (14)

where the coefficient of dispersion, α0, is determined
by repeated integrals of the velocity profile [36].

α0 =
∫ 1

0

(u′−1)
∫ y∗

0

∫ y∗

0

(u′−1) dy∗dy∗dy∗ =
δ2

30
(15)

The term 2Dt in Eq. (14) accounts for spreading due
to diffusion alone, while the term 2α0Pe

2Dt accounts
for dispersion.

Substituting Eq. (15) into Eq. (14) and rewrit-
ing the result in terms of the dimensionless vari-
ables gives the increase in the normalized variance
of the species distribution during transport through

a turn. The expression obtained, applicable to the
region just downstream of the turn, is(σ

a

)2

=
2
δPe

[
1 +

(δPe)2

30

]
θ (16)

Neglecting the contribution of streamwise diffusion,
this may be written in the simpler form(σ

a

)2

=
1
15
θ δPe (17)

By neglecting streamwise diffusion, this latter result
describes just that portion of the spreading that is
due to dispersion resulting from the turn geometry.

HIGH PECLET NUMBER SOLUTION

Transverse diffusion in the course of a turn can-
not significantly redistribute species concentrations
across the channel when the Peclet number is large.
Each elemental volume of a thin species band in-
stead traverses the turn along a single streamline,
and the distance between the leading and trailing
edges downstream of the turn is

∆` = U

∫ θ

0

(
ro
uo
− ri
ui

)
dθ ≈ 2 a θ (18)

where ui and uo are the local fluid speeds along
the inner and outer radii. The left-hand version of
this expression is completely general, while the right-
hand form applies when the radius of the turn is large
compared to the channel width.

More generally, the distance between any two
points on the downstream band is ∆`1,2 = 2aθ(y∗2 −
y∗1) when the radius of the turn is large. The
downstream distribution is therefore described by a
straight line between the two channel walls that is in-
clined to the direction of motion. The mean species
distribution, spatially averaged across the channel
width, is thus uniform between the leading and trail-
ing edges, and the variance of such a rectangular dis-
tribution is (σ

a

)2

=
1
12

(
∆`
a

)2

=
θ2

3
(19)

This result is similar to the expression derived by
Culbertson in the corresponding limit of a small tran-
sit time through the turn [30]. In this previous work,
however, the constant 12 above was replaced by an
empirical value of about 24 based on a fit to data.
This is further discussed later on.
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Note that the turn-induced variance at high
Peclet numbers is independent of both the turn ra-
dius and mean fluid speed. Thus the popular notion
that turns of large mean radius reduce dispersion is
not correct in this limit. Rather, the spreading in
this case depends only on the channel width and in-
cluded angle of the turn. Note also that the variance
is proportional to the square of the included angle
in the high Peclet number limit, but varies linearly
with the angle when the Peclet number is small.

COMPOSITE SOLUTION

The functional forms of Eqs. (17) and (19) show
that the dispersive portion of the variance increases
linearly with the Peclet number when the Peclet
number is small, but asymptotically approaches a
constant when the Peclet number grows large. This
suggests that a composite solution of the form

( a
σ

)2

=
( a
σ

)2

Pe→0
+
( a
σ

)2

Pe→∞
(20)

might accurately describe the increased variance over
all Peclet numbers. Substituting Eqs. (17) and (19)
into this expression and rearranging slightly gives

(σ
a

)2

=
θ2δPe

15 θ + 3 δPe
(21)

Now adding the contribution to spreading by stream-
wise diffusion yields

(σ
a

)2

=
θ2δPe

15 θ + 3 δPe
+

2θ
δPe

(22)

for the total increased variance of the species distri-
bution. This latter result applies just as the species
profile emerges from the turn since streamwise dif-
fusion continues to spread the profile in the straight
channel segment downstream.

The preceding results were all developed from
the perspective of a very thin species band initially
entering the turn. However, the variance induced
by a turn is always additive with that of the initial
distribution, so these results are independent of the
width and profile of the band initially entering the
turn. The expressions above need only be interpreted
as the net increased variance due to the presence of
the turn. This additive property, while not imme-
diately obvious, was confirmed using the numerical
model described below.

NUMERICAL METHOD

To more generally address distribution broad-
ening induced by turns, we have developed a nu-
merical algorithm for solving the Laplace equation
using a novel numerical technique. This technique
employs an inverted approach in which the depen-
dent variables are the unknown values of the spatial
coordinates and the independent variables are the
normalized electric potential, φ∗, and an associated
stream function, ψ∗ [38]. Boundary conditions in the
physical domain are readily mapped to the inverted
domain using the Cauchy-Riemann compatibility re-
lations. The advantage of this approach is that the
computational domain is always rectangular, regard-
less of the turn geometry, and the curved boundaries
of the channel walls appear only as boundary con-
ditions on the rectangular domain. The analysis of
transport in complex turn geometries is thus greatly
simplified using this method of solution.

The inverted method yields a full two dimen-
sional solution describing the electric potential in the
turn and adjoining straight channel segments. Fluid
or species velocities are then computed using a nor-
malized form of Eq. (5). This inverted method does
not rely on the assumption of a large turn radius, so
nonzero radial components of the fluid velocity near
the turn entrance and exit are properly described if
the geometry of the turn leads to such a condition.
This distinguishes the numerical approach from the
preceding analysis, where the approximation δ¿ 1
was used in developing Eqs. (9) and (12).

Transient species transport in this numerical
scheme is simulated using a Monte Carlo method.
Tracer particles are first injected into the straight
channel segment several channel widths upstream of
the turn. This is followed by a series of steps in which
each particle is advected along local lines of constant
ψ∗, as it diffuses in both the φ∗ and ψ∗ directions.
The length of the advective step is u∗Pe∆t∗S, based
on the local speed, while the length of each diffusive
step is R

√
2∆t∗S where R is a normally-distributed

random variable having a mean of zero and variance
of one [39]; S is the local scale factor relating spatial
steps to steps in ∆φ∗ and ∆ψ∗. All of these steps take
place in the orthogonal φ∗ and ψ∗ coordinate system.
The advantage of this is that the streamwise diffu-
sion may be neglected in order to more clearly isolate
the spreading that results from the turn geometry.
Transverse diffusion of course does not contribute to
species spreading, but does play an important role
in reducing dispersion caused by nonuniform speeds
in the turn.
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Pe = 200

10001000

55

Pe = 2Pe = 2

Figure 1. Numerical simulation of the history of
species transport through a turn. Band spreading
at high Peclet numbers is dominated by skewing in-
duced by the turn geometry. The total turn-induced
normalized variance is (σ/a)2≈3.4.

Spreading of the species distribution is com-
puted from the final positions of the tracer particles
once all of the particles have traversed the turn. The
streamwise mean particle position is first computed
as the simple average of all positions. The variance
of the distribution is then computed as the average
sum of the squares of the spatial deviations from the
mean. The result is a statistical estimate of σ2 for
the turn. Again either the total variance or that
due only to the turn geometry may be computed by
respectively including or neglecting the streamwise
diffusive steps.

Species spreading due to diffusion in the up-
stream and downstream straight channel segments
must not be included when computing the total vari-
ance induced by a turn. This can be managed in
one of two ways. The first means is to subtract
the quantity 2D(t − r̄θ/U) from the final computed
total variance. The second method is to neglect
streamwise diffusion during tracer motion whenever
a tracer particle resides outside the curved portion
of the channel. Both methods yield similar results,
though the latter is more accurate when the Peclet
number is small and spreading is dominated by dif-
fusion. In this limit, the first method yields the total
turn-induced variance as a small difference between
two large numbers: the computed total variance for
the straight and curved segments, less the estimated
spreading by diffusion outside the turn. The second
method yields the total variance directly.

Figure 2. Simulated spreading in a turn. Left
column includes streamwise and transverse diffu-
sion; right column neglects streamwise component.
Streamwise diffusion increases total spreading, but
transverse diffusion reduces dispersive contribution.

Sample results are shown in Fig.1 for a 180◦ turn
having a inner radius 75% of the channel width. This
geometry gives a normalized turn radius of r̄/a=1.2
or, equivalently, δ = 0.8. The series of frames, read
from top to bottom along both columns, represents
the history of a thin species band traversing the turn
at a Peclet number of Pe= 200. The time interval
between frames is fixed.

The results in Fig. 1 show the normal progres-
sion of a species band, including both streamwise and
transverse diffusion. Thus the distribution spreads
even in the straight channel segment upstream of the
turn. As the band approaches the turn, the nonuni-
form fluid velocity severely skews the distribution
profile. Species traveling along the inner radius com-
plete the turn first, followed progressively by species
closer to the outer channel wall. The result follow-
ing the turn is a roughly linear band spanning the
channel width but no longer orthogonal to the di-
rection of motion. As this band progresses further
along the downstream channel segment, transverse
and streamwise diffusion will eventually produce a
species distribution that is again uniform across the
channel and Gaussian in the direction of motion. The
variance of this final distribution once more grows
linearly in time.

The spreading illustrated in Fig. 1 results from
both dispersion and streamwise diffusion. These two
influences can be isolated, somewhat, by including
or neglecting streamwise diffusion. Sample calcula-
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tions illustrating this are shown in Fig. 2. Here, each
frame represents a snapshot of the species distribu-
tion downstream of the turn at a fixed time. The
turn geometry is the same as that of Fig. 1. The left
column in Fig.2 shows the species distribution result-
ing from dispersion and both streamwise and trans-
verse diffusion over a range of the Peclet number.
Here we see that increasing Peclet numbers gener-
ally reduce the width (and variance) of the resulting
species distribution.

Frames on the right of Fig. 2 are for the same
Peclet numbers as those on the left, but in these
only transverse diffusion is included in the calcula-
tion. The frames on the right thus represent only
that portion of the spreading due to the turn geome-
try. Here we see that transverse diffusion tends to re-
duce the spreading that results from the nonuniform
velocity field, and the variance of the distribution
thus increases with increasing Peclet number.

These general observations are consistent with
the analytical results previously discussed. The col-
umn on the left of Fig. 2 corresponds to Eq. (22)
describing the total variance. As the Peclet number
is reduced, the second term on the right of this ex-
pression becomes dominant, and the variance of the
distribution increases. Equation (21) describes that
portion of the variance attributable to the curved
geometry and so similarly corresponds to the right-
hand column of Fig. 2. This latter expression indi-
cates that the variance generally increases with in-
creasing Peclet number and approaches the asymp-
totic value (σ/a)2 = θ2/3 as the Peclet number be-
comes infinite.

DISCUSSION OF RESULTS

The analysis leading to Eqs. (21) and (22) was
based on an assumption that the mean radius of the
turn is large compared to the channel width. That
is, δ = a/r̄¿ 1. The result for low Peclet numbers,
Eq. (17), further employed an assumption that the
transit time for traversing the turn was large com-
pared to the characteristic time for diffusion across
the channel. This second approximation is equiva-
lent to t∗=Dt/a2 =θ/δPeÀ1. Here we examine the
applicability of these assumption by comparing the
analytical solutions with numerical results. Again,
the numerical method relies on no assumptions re-
garding the turn geometry or transport characteris-
tics. The numerical solutions thus take into account
dispersion resulting from nonuniform fluid velocities
just upstream and downstream of the turn, as well
as radial components of the velocity not described by

Figure 3. Scaled variance of species distribution
computed numerically for large Peclet numbers. The
large-radius approximation (dashed curve) remains
quite accurate for all turn angles even for δ≈1.

Eq. (9). The numerical solutions also account for the
true diffusion occurring within the turn, regardless
of the value of t∗.

First consider a case for which the Peclet num-
ber is infinitely large. In this limit, diffusion plays no
role in spreading the species profile, and all spread-
ing results instead from simple skewing of the distri-
bution profile due to the geometry of the turn. By
Eq.(19), the variance of the distribution following the
turn should be proportional to the square of the in-
cluded angle. This expression shows no dependence
on δ only because the turn radius was assumed to be
infinite. To examine the validity of this assumption,
we have computed the actual species variance down-
stream of a turn using the numerical approach. Both
streamwise and transverse diffusion are neglected in
these calculations, consistent with the case of an in-
finite Peclet number. The results are shown in Fig. 3
for included angles of 45, 90 and 180 degrees and val-
ues of the normalized mean turn radius from 1/2 to
100. Note that the normalized variance here is also
scaled by the square of the included angle.

In Fig.3 we see that the distribution variance in-
duced by a turn is indeed proportional to the square
of the included angle and independent of the turn ra-
dius when the radius is large compared to the chan-
nel width. We also see that the asymptotic value of
the variance in this large-radius limit is well approx-
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Figure 4. Species distribution downstream of turn.
Distribution becomes shifted toward the leading edge
as turn radius approaches channel width. Variance
of the distribution is nevertheless not much affected.

imated using Eq. (19), as indicated by the dashed
curve. Further, this approximation remains valid
even when the turn radius is comparable to the chan-
nel width. At r̄/a = 1/δ = 1, the computed vari-
ance in the high Peclet number limit deviates from
(σ/a)2 = θ2/3 by only about 10, 7 and 4 percent
for θ = π, π/2 and π/4, respectively. The smallest
possible normalized turn radius occurs at ri = 0 or
r̄/a = 1/2, and even here the approximation yields
a deviation from the numerical result of only about
50% for θ=π.

This broad agreement between the analytical
and numerical solutions shown in Fig.3 suggests that
the downstream species distribution remains fairly
uniform for all δ≥1. That is, the variance of the dis-
tribution seems well approximated by ∆` 2/12, cor-
responding to a uniform distribution as expressed in
Eq.(19). This is in fact is not the case. The distribu-
tion is highly nonuniform except for δ greater than
about five.

Figure 4 shows computed species distributions
following a 180◦ turn for several turn radii. The dis-
tributions shown are normalized to unit area in the
manner of a probability distribution. These species
distributions are computed from the tracer particle
locations by first constructing the normalized cumu-
lative distribution and then numerically differenti-
ating the cumulative distribution to yield the nor-

Figure 5. Comparison between analytical (curves)
and numerical (symbols) results. Dashed curves and
open symbols represent total variance; solid curves
and symbols indicate dispersive contribution only.

malized species distribution. Here we see that the
downstream spatial distribution is fairly uniform for
δ¿1, but is not uniform at all for δ≥1/2. For δ=1,
the species concentration between the leading (left)
and trailing (right) edges differ by almost a factor of
seven. Despite this, the normalized variances of the
four distributions shown in Fig. 4 range only from
(σ/a)2 = 3.60 for δ = 1 to 3.29 for δ = 0.05. Thus
the wide range of applicability of Eq. (19) appears
to be mainly a happy coincidence based on offset-
ting second-order contributions to the turn-induced
variance; it does not indicate that the downstream
species distribution is uniform.

Figure 5 shows a more general comparison
between the variance computed analytically using
Eqs. (21) and (22) and values computed by numer-
ical means. In this case the normalized variance is
plotted as a function of the modified Peclet number,
δPe. By Eqs. (21) and (22), the computed variance
should depend only on the included angle and this
parameter. As such, the numerically-computed to-
tal variance and the dispersive contribution should
each fall on a single curve identified only by the in-
cluded angle, regardless of the turn radius. We see
that this is indeed generally the case. The analyti-
cal and numerical solutions describing both the total
and dispersive variance are in very good agreement
over most of the conditions shown, confirming the
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validity of the analytical results. These conditions
span π/4 ≤ θ ≤ π and 0.05 ≤ δ ≤ 0.8 and thus rep-
resent nearly the entire range of turn geometries of
practical interest.

Each symbol in Fig. 5 represents the variance
computed numerically for the specified conditions us-
ing 1000 tracer particles, thus the expected accuracy
of these statistical estimates is thus about ±3%. The
height of the symbols represent a variation of about
10%, so any symbol touching its corresponding curve
indicates that the deviation between analytical and
numerical results is at most 8%.

The most significant deviations between the an-
alytical and numerical solutions occurs when δ is
large but both δPe and the included angle are small.
This is most apparent in the triangles at the left of
the two lower curves for θ= π/2 and π/4; triangles
correspond to δ= 0.8. That the analytical solutions
lose accuracy when δ is large is not surprising since
the analysis was based on an assumption that δ¿1.
It is surprising, however, that the loss of accuracy is
greatest when the included angle is small. For θ=π,
the analytical solution still appears to be very good
at similar δPe even for δ=0.8. Likewise, this behav-
ior cannot be explained simply by a breakdown of
the low Peclet number assumption that t∗ = θ/δPe
is large. The value of t∗ along each curve is a function
of δPe only, so this also cannot account for the loss
of accuracy for non-negligible δ when the included
angle is small. This behavior remains something of
a mystery and likely results from a growing imbal-
ance in offsetting errors generated by both of these
assumptions.

OPTIMUM TURN GEOMETRY

The results in Fig.5 indicate that increased vari-
ance of the species distribution downstream of a turn
always decreases with decreasing Peclet number in
the absence of streamwise diffusion. The variance of
the distribution attributable to the turn geometry is
thus minimized by minimizing the Peclet number, as
illustrated in the right-hand columns of Fig. 2. How-
ever, low Peclet numbers lead to significant spread-
ing due to streamwise diffusion, and because of this
the total variance, expressed by Eq. (22), exhibits a
minimum at the condition

δPe =
30 θ√

30 θ − 6
(23)

This result defines either an optimum geometry for
a given Peclet number and included turn angle or an
optimum Peclet number for a given turn geometry.

Note that this optimum condition exists only for in-
cluded angles θ>

√
6/5 or θ>63◦. For smaller angles

the turn-induced dispersion is too small to provide
the tradeoff between dispersion and streamwise dif-
fusion needed to yield a minimum.

Although the equation above defines an opti-
mum condition for minimum total spreading, the
benefit of this optimum is fairly small. Substitut-
ing Eq. (23) into Eq. (22) yields(σ

a

)2

=
4θ√
30
− 2

5
(24)

For θ = π, this gives (σ/a)2 ≈ 1.89. In comparison,
the maximum variance in the high Peclet number
limit is only (σ/a)2 = θ2/3≈3.29. Thus the minimum
dispersion for this turn is still nearly 60% of the high
Peclet number value.

One useful means of interpreting the normalized
variance (σ/a)2 is to compute the length of a straight
channel segment, L, yielding the same increased vari-
ance by diffusion alone. The variance for the diffu-
sion problem is σ2 =2Dt, where t=L/U . Combining
these expressions and normalizing the length by the
channel width gives

L∗ =
L

a
=
Pe

2

(σ
a

)2

(25)

Based on the minimum above of (σ/a)2≈ 1.89, this
yields L∗=189 at a Peclet number of only 200. Such
a turn would thus increase the distribution variance
by the same amount as a straight channel segment
of a length equal to about 200 channel widths. For
a Peclet number of 1000, this length would increase
to nearly 1000 channel widths.

COMPARISON WITH PRIOR STUDY

Culbertson et al. [30] previously investigated the
geometric dispersion induced by microchannel turns.
They developed an analytical model based on a high
Peclet number solution like that derived here, but
employed an empirical relation to describe the dis-
tribution variance when the Peclet number is small.
The form of their expression is(σ

a

)2

=
4θ2

X

(
1− e−Atd/tt

)2

(26)

where X = 23.7 and A = 0.977 were obtained from
a least-squares fit to measured results over a wide
range of conditions spanning 0.08 ≤ δ ≤ 0.48 and
10≤Pe≤420.
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This correlation and Eq. (21) are similar in the
limit of a high Peclet number, except for the con-
stant X ≈ 24 in Eq. (26). This constant corresponds
exactly to the 12 appearing in Eq.(19). In this limit,
Eq. (26) thus yields a normalized variance of about
one-half that given by Eq. (21).

At lower Peclet numbers, the Culbertson corre-
lation accounts for the influence of transverse diffu-
sion through a dimensionless ratio of the characteris-
tic time for diffusion across the channel width to the
time for transit through the turn. They defined this
ratio as

td
tt

=
a2Ur̄

2Dθ(r̄ + a/2)2
=

δPe

2θ(1 + δ/2)2
(27)

This ratio is nearly the inverse of t∗ given in Eq.(13),
but contains some additional dependence on the turn
geometry as expressed by the term 2(1+δ/2)2. This
ratio further contains the Peclet number only in the
product δPe, which is consistent with our present an-
alytical solution. However, the behaviors of Eq. (21)
and Eq.(26) are quite different when the Peclet num-
ber is small. Expanding Eq. (26) for td/tt→0 gives

(σ
a

)2

∼ A2

X

(δPe)2

(1 + δ/2)4
as Pe→ 0 (28)

Equation (26) thus yields a normalized variance that
is proportional to the square of δPe and indepen-
dent of the included angle when the Peclet number
is small. In contrast, Eq.(21) indicates that the vari-
ance should be proportional to θδPe in this limit.

These differences between Eqs.(21) and (26) are
illustrated in Fig.6. Here both are plotted as a func-
tion of the Peclet number for a range of values of δ.
It is clear from this that the turn-induced variance
expressed by Eq. (26) is always significantly lower
than the values given by Eq. (21), and this disparity
grows larger as the Peclet number falls.

The apparent explanation for these large dis-
crepancies is that the channels used by Culbertson
had tapered sidewalls, and the widths they reported
were the widths at the channel top. Their chan-
nels were produced by an isotropic etch of soda-lime
glass, so the mean channel width was always smaller
than the width at the top. Their reported values
of the normalized variance, scaled by the top chan-
nel width, are thus smaller than the values obtained
by scaling the same raw data using the mean width
instead. If Culbertson et al. had normalized the vari-
ance using the mean channel width, we expect that
their fit would have yielded X ≈ 12 in keeping with

Figure 6. Comparison between Eqs. (21) and (26).
Previous expression (dashed curves) yields a nor-
malized variance much smaller than present solution
(solid) for all Peclet numbers and turn radii.

Eq. (19) of the present study. Since the variance in
the high Peclet number limit is proportional to the
square of the channel width, even small discrepan-
cies between the top and mean widths can have a
significant influence.

To illustrate the effect of tapered sidewalls,
we have computed the turn-induced variance using
Eq. (21) for the range of parameters appearing in
Culbertson’s paper. The results are plotted in Fig.7,
along with Culbertson’s data, using the axes td/tt
and (σ/2θw)2 to replicate Fig.4 of their paper. Here
w is the top channel width.

Two sets of curves are shown in Fig. 7. The
upper set represent the result from Eq. (21) using
a=w. Values along the lower set of curves are also
computed from Eq. (21), but in this case the channel
width is taken as a = w−h, where h is the chan-
nel depth. This expression yields the mean chan-
nel width for a 45◦ sidewall angle. Actual channel
depths were not reported by Culbertson; here we use
h=10 µm as the presumed depth based on values for
similar channel widths reported elsewhere by these
authors [7].

Each curve set in Fig. 7 consists of nine curves
corresponding to all permutations of r̄=125, 250 and
500 µm with w=38, 47 and 60 µm of the Culbertson
study. A single curve thus represents one value of the
normalized turn radius, r̄/a = 1/δ. For each value
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Figure 7. Comparison between present analysis and
data of Culbertson et al. Equation (21) is in good
agreement with measured results when evaluated us-
ing the mean channel width, a=w−h.

of δ, Eq. (27) is used to compute δPe from td/tt, and
the variance is then computed using Eq. (21). These
appear as a separate curves here because td/tt is not
quite equivalent to δPe appearing in Eq. (21).

Note that the curves of the lower set segregate
into three groups for large td/tt. These three groups
correspond to the three channel widths, as indicated
by the numerals toward the right of the plot. The
reason for this segregation is that the relative influ-
ence of sidewall taper on the mean channel width de-
pends on the top channel width. For a fixed channel
depth and sidewall angle, the top channel width is
relatively close to the mean width when the channel
is wide compared to the depth. In this case, the con-
dition a≈w is approached. As the channel becomes
smaller, the top and mean widths diverge, approach-
ing a minimum of a≈w/2, and the scaled variance
(σ/2θw)2 based on the top width decreases. This is
of course just an artifact of scaling since the actual
variance is simply proportional to the square of the
mean channel width.

The dashed curve in Fig.7 represents Eq.(26) de-
veloped by Culbertson. The constants in this expres-
sion were obtained by fitting the data shown. While
Eq.(26) captures the general trend of the data, there
appears to remain significant scatter about this fit.
In contrast, the results of our present analysis bound
most of this apparent scatter, suggesting that the de-

viations from Eq.(26) may in fact have some physical
basis. The original data reported by Culbertson were
identified by the mean turn radius, but not by the
channel width. Thus it is not possible to associate
specific data points with specific curves as both val-
ues are needed to compute δ. Still, Eq. (21) appears
likely to provide a better fit to the data than does
Eq. (26).

Tapered channel walls appear to resolve the ma-
jor differences between Eqs.(21) and (26). These two
expressions are not equivalent, however, in either the
low or high Peclet number limits. Equation (26) is
specific to the channels used in the Culbertson study
since the constant X=23.7 seems to carry a hidden
dependence on the channel width, depth and sidewall
angle. In contrast, Eq. (21) is universal and is appli-
cable to either vertical or tapered sidewalls, provided
that the channel width, a, is taken as the mean width
over the depth of the channel.

SUMMARY

Here we examine the spreading of a species band
induced by electrophoretic or electroosmotic trans-
port through a two-dimensional turn. Analytical
solutions to the governing transport equations are
obtained in the limits of low and high Peclet num-
bers. From these asymptotic behaviors, we construct
a composite solution applicable to all Peclet num-
bers. Numerical solutions are also presented for a
variety of turn geometries and a wide range of the
Peclet number. These solutions rely on no approx-
imations regarding either the Peclet number or ge-
ometry of the turn.

We find that the band spreading due to trans-
port through by a turn is well described for all Peclet
numbers by the composite solution

(σ
a

)2

=
θ2δPe

15 θ + 3 δPe
+

2θ
δPe

where σ2 is the total increased variance of the down-
stream species distribution, a is the mean channel
width, θ is the included angle of the turn, δ is the
ratio of the channel width to the mean turn radius,
and Pe= Ua/D is the Peclet number based on the
mean channel width and fluid or species speed. The
first term on the right of this expression describes
the dispersive contribution to the total variance; the
second term describes the additional contribution of
streamwise diffusion.

This analytical expression is based on an as-
sumption that the radius of the turn is much larger
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than the channel width. Despite this assumption,
the expression provides accurate results even when
the turn radius is comparable to the channel width.
Based on comparisons with our numerical results,
we find that it yields both the dispersive component
and total variance to within about 10% for all Peclet
numbers, all r̄/a=1/δ≥1, and included turn angles
up to 180◦.

The dispersive portion of the turn-induced vari-
ance in the high Peclet number limit is proportional
to the squares of the channel width and the included
turn angle, but is independent of both the Peclet
number and radius of the turn. As such, more grad-
ual turns do not reduce the variance when the prod-
uct δPe is larger than about five times the included
angle. On the contrary, large radius turns gener-
ally increase the total variance owing to the added
contribution of streamwise diffusion. At low Peclet
numbers, we find that the dispersive portion of the
total variance is proportional to the product θδPe.
In this limit, the dispersive variance is thus inversely
proportional to the turn radius. In contrast, the to-
tal variance grows in proportion to the turn radius
when the Peclet number is small.

Based on the expression above, the total turn-
induced variance exhibits a minimum between the
extremes of low and high Peclet number if the in-
cluded angle of the turn is greater than about 63◦.
The optimum condition defines either a preferred
Peclet number for a fixed turn geometry or a pre-
ferred geometry for a fixed Peclet number. The total
variance at this minimum is about a factor of two
below the value in the high Peclet number limit for
a 180◦ included angle. While this is a significant re-
duction, it may not provide any real practical benefit
when the Peclet number is large. When the Peclet
number is small, however, a large turn radius should
be avoided to limit band spreading by diffusion. In
this case, the benefit of the optimum geometry can
be very large since diffusive spreading may far ex-
ceed that due to the turn geometry when the Peclet
number is small.

Finally, this analytical expression is compared
with experimental results previously obtained by
Culbertson et al. We find that the dispersive por-
tion of the expression agrees well with their data,
provided that the mean channel width properly ac-
counts for the channel sidewall taper.

NOMENCLATURE

a mean channel width
c species concentration

ce ion concentration
D binary diffusivity
E applied electric field
F Faraday constant
L distance of travel: L=Ut
Pe Peclet number: Pe=Ua/D
s streamwise position
r radial position
r̄ mean turn radius: r̄=(ri + r0)/2
t time
u streamwise fluid speed
u local fluid velocity
U mean fluid speed
w top channel width
y transverse position
z charge number

ε dielectric constant
ζ surface electric potential
θ angular position or included angle of turn
λ Debye length
µ viscosity
ρe charge density
σ2 increased variance of species distribution
φ electric potential
ω angular speed: ω=U/r̄

Normalized Variables
E electric field: E=−∇φ/Ex
r∗ radial position: r∗=r/r̄
s∗ streamwise position: s∗=(θ−ωt)r̄/a
t∗ time: t∗=Dt/a2

u∗ local fluid speed: u∗=u/U
y∗ transverse position: y∗=y/a
λ∗ Debye length: λ∗=λ/a
ζ∗ surface potential: ζ∗=zFζ/RT

Subscripts and Superscripts
i, o on inner or outer radius
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